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In parts I and II of this series 1-1] it has been demonstrated that localized three centre and two 
centre bonds may be used as basic functions for molecular orbital calculations on closed ("cage") and 
open ("basket") boron polyhedral molecules. In the present paper it is shown that th~ "face" and "edge" 
matrices of this theory are related to incidal and 1 and 2 simplexial matrices in the same way that 
Hiickel matrices in the theory of unsaturated hydrocarbons are related to incidal matrices and 0 and 1 
simplexial matrices. The theory is thus a topologically-correct extension of Hiickel theory to three 
dimensions. 

In Teil Iund II dieser Serie [1] wurde demonstriert, dab lokalisierte Dreizentren- und Zweizentren- 
Bindungen als Basisfunktionen fiir MO-Rechnungen bei geschlossenen (,,K~ifig") und offenen (,,Korb") 
polyhedralen Borwasserstoff-Molekiilen benutzt werden krnnen. In der vorliegenden Arbeit wird 
gezeigt, dab die ,,Oberfliichen"- und ,,Randmatrizen" dieser Theorie mit Incidal- sowie 1- und 2-Sim- 
plexmatrizen verwandt sind, in derselben Art wie die Hiickel-Matrizen in der Theorie der unges~ittigten 
Kohlenwasserstoffe mit Incidal-Matrizen sowie 0- und 1-Simplexmatrizen in Beziehung stehen. Die 
Theorie ist somit eine topologisch korrekte Erweiterung der Hiickel-Theorie auf drei Dimensionen. 

Dans les parties Iet  II de cette suite d'articles on a drmontr6 que des liaisons localis~es/t trois et fi 
deux centres peuvent 6tre employres comme fonctions de base pour des calculs d'orbitales molrculaires 
sur des molrcules polyhrdriques boriques fermres (~cage~) et ouvertes (~panier~). Dans cet article 
on montre que les matrices ~faces~ et ~ar~tes~ de cette throrie sont lires aux matrices d'incidence et 
aux matrices simplexes 1 et 2 de la marne mani~re que dans la throrie de Htickel la matrice hamil- 
tonienne est relire aux matrices d'incidence et simplexes 0 et 1. La throrie est donc une extension 
trois dimensions, correcte du point de vue topologique, de la mrthode de Hiickel. 

T h e  i n o r g a n i c  chemis t  has  for  m a n y  years  r a t i ona l i s ed  the  e l ec t ron i c  s t ruc tu re  

o f  the  p o l y h e d r a l  b o r o n  h y d r i d e s  in t e rms  of  t h r e e - c e n t r e d  b o n d s  [2].  T w o  classes 

o f  t h r ee - cen t r e  b o n d s  h a v e  b e e n  i n v o k e d ,  node l e s s  a n d  s ing le -noded .  E x a m p l e s  

o f  the  first class a re  s h o w n  in Figs.  1 a n d  2, wh ich  depic t ,  respec t ive ly ,  B J H ~ ' B  

a n d  B J B ~ B  th ree  c e n t r e d  bonds .  T h e  s e c o n d  class is exempl i f i ed  in Fig.  3 by a 

B J B ~ ' B  bond .  I t  is a s imp le  m a t t e r  to  jus t i fy  the  use of  such  loca l i sed  o rb i t a l s  for 

each  o f  these  g roups ,  bu t  the  j u s t i f i c a t i on  for  the i r  use in m o r e  de loca l i s ed  sys tems  

rests  u p o n  the  fact  t ha t  the i r  use usua l ly  leads  to  a co r r ec t  c o u n t  o f  the  n u m b e r  o f  
b o n d i n g  orbi ta ls .  T h e r e  a r e  difficulties,  h o w e v e r .  F o r  example ,  the  o c t a h e d r a l  
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B6H ~- anion, with eight equilateral triangles of boron atoms (Fig. 2), has fourteen, 
not sixteen, electrons associated primarily with the cage bonding. Further, for 
molecules containing "basket" arrangements of boron atoms (i.e. fragments of 
polyhedra) it is necessary to require that two boron atoms bridged by a hydrogen 
(Fig. 1) do not participate in a bond of the type shown in Fig. 2, although X-ray 
measurements indicate that the two boron atoms may be closer together than 

others which are considered to participate in B / B ~ B  bonding. 

B 
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Fig. 1 Fig. 2 

/ ' ,  + \ / "  

t/ / ' /  
B 

\ ' - , .  f --1," \ \ 
\ '-I----" \1 

",,5.. 7 
B 

Fig. 3 

In Parts I and II of this series we showed that these difficulties could be removed 
by recognition of non-orthogonality between members of the basis of three-centred 
localised orbitals. As a first approximation, the problem was treated in Htickel 
fashion, a localized three centre orbital being assigned a coulomb energy d, all 
resonance integrals being set equal to zero, except those between orbitals which 
correspond to polyhedra faces with an edge in common, which were given the 
value fl'. Such calculations led to a delocalised molecular orbital energy level 
scheme similar to those obtained from more extended molecular orbital calcula- 
tions. As an example, we compare in Table 1 the results of our calculations for the 
B6 H2- octahedron using a basis of localised orbitals of the type shown in Fig. 2 
- "face" orbitals - with those of Longuet-Higgings and Roberts [3]. 

The use of a topological basis set corresponding to triangular faces of a boron 
polyhedron was suggested by the success obtained for metal-metal bonded systems. 
This latter application also suggested that it might be profitable to consider a basis 
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corresponding to polyhedron edges. That is, of localised, two-centre ("edge") 
orbitals. Such calculations were carried out, the coulomb integrals being given the 
value c~, and resonance integrals between bonds which corresponded to sides 
bounding the same triangular polyhedron face were given the value p. All other 
resonance integrals were set equal to zero. These calculations show that if the 
energy of a molecular orbital of a closed polyhedron using the "face" basis is 
c( + n/~', the corresponding molecular orbital using the "edge" basis is ~ + (n + 1)/3'. 
Orbitals unique to either set have energies c~ - 3//("face" basis) or e' - 2/3' ("edge" 
basis) (results for the "edge" basis are also included in the Table).These generalisa- 
tions, however, do not apply to the "basket" boron hydrides. 

Table 

Molecular  orbital  symmetry  

Orbital  energies 

"edge" basis "face" basis Ref. [3] 

unoccupied Azu ~' - 3fl' 
molecular  Eg ~ - 2fl - 0.88x ~ 
orbitals T2u e - 2/~ - 0.42x 

occupied T2g ~ e' - fl' 0.49x 
molecular  Tt~ , r + 2/~ ~' + fl' 1.02x 
orbitals Alg ct + 4fl e' + 3fl' 2.97x 

a The parameter  x is, very roughly,  a linear function of energy. 

In the present paper we discuss the origin of these relationships and demonstrate 
that the bases and method of calculation which we have used are a topologically- 
correct extension of Hiickel theory to three dimensional systems. We do this by 
demonstrating the isomorphism which exists between our Hiickel matrices and 
certain topological matrices, which are themselves inter-related. Precisely similar 
relationships hold for the Hiickel matrices used to describe conjugated hydro- 
carbons and similar molecules. 

First, we introduce some of the nomenclature of topology. A 2-simplex is 
associated with an equilateral triangle, a 1-simplex with a line and a 0-simplex 
with a point [4]. The analogy which exists between 2-, 1- and 0-simplexes and 
"face", "edge" and atomic orbital bases should be apparent. The arguments which 
we present are most clearly demonstrated by a detailed consideration of particular 
cases, but we shall introduce generalizations where appropriate. 

"d 
Fig. 4 

13" 
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Consider  a te t rahedral  a r ray  of 0-simplexes (Fig. 4), the associated 1- and 
2-simplexes being labelled as indicated. The  2,-2-simplexial matr ix  is 

c d 

a 1 1 

b 1 1 28= 
c 0 1 

d 1 0 

Similarly, the 1-, 1-simplexial matr ix  
A 

A 

B 

t s  C 
= D  

E 

F 

-0 

1 

1 

0 

1 

1 

a b 

O 

1 

1 

is 
B C 

1 1 

0 1 

1 0 

1 1 

0 1 

1 0 

Consider  the non-polar ized  1-, 2-incidence 

A B C  

a ~1 1 0 

1,21 = b [0  1 1 
c 1 0 1 

d 0 0 0  

(1) 

D E F  

0 1 1 

1 0 1 

1 1 0 

0 1 1 

1 0 1 

1 1 O_ 

matr ix  1 

D E F  

1 0  

0 1  

1 1  

(2) 

(3) 

F o r m  the products  1'21 l'2Itr and 

matr ix  I 

1,21 1,21tr = 

1,2ltr 1,21 = 

l'2ltr 1'21, where I tr is the t ranspose  of the 

3 1 1 1 

1 3 1 1 

1 1 3 1 

1 1 1 3 

2 1 1 0 

1 2 1 1 

1 1 2 1 

0 1 1 2 

1 0 1 1 

1 1 0 1 

1 1 

0 1 

1 0 

1 1 

2 1 

1 2J 

(4) 

(5) 

The elements in 1,21 1,21tr count  the n u m b e r  of 1-simplexes which the 2-simplexes 
have in c o m m o n ;  similarly the elements  in l '2Iir 1'2I count  the n u m b e r  of  2-sim- 
plexes which the 1-simplexes, t aken  in pairs, together  bound.  It  is evident that,  if 

The more usual (polarized) incidence matrix would appear appropriate to a discussion based 
on antibonding orbitals as basis. 
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1,21 is an m • n matrix with m > n, then 

1,2i 1,2ltr = 2 s ..~ 31. (6) 

where 1. is a n • n unit matrix and 

1,21tr 1,21 = 1 s + 21,. .  (7) 

Relations (6) and (7) are true for all polyhedra composed of equilateral triangular 
faces (Part I). 

Now 1'2It' a'21 and 1'21 l'2Itr are of the same rank, (r) (= 4 in the example above), 
although 1S and 2S will in general not be (1S is of rank 4 and 2S of rank 3 in the 
example above), and will have r identical eigenvalues, from the general rule that 
ifA is an n x m matrix and B is an m x n matrix, A B  and BA have the same rank r 
and they have r identical eigenvalues [5]. 

From the definition of rank it follows that all other eigenvalues will be zero. 
As is evident from (6) and (7), the eigenvalues of 1S and 2S are closely related to 
those of l'2Itr 1'21 and 1'2I l '2Itr; corresponding eigenvalues will differ by unity, 
the others having a value of - 3 for 2S and - 2 for aS. Now, in our discussion of 
the B 4 tetrahedron we set up "face" and "edge" matrices which are isomorphous 
with 2S and IS respectively. The origin of the relationships between the eigenvalues 
obtained from the "face" and "edge" secular determinants follows immediately 
from this isomorphism. 

B 

D E 

A 
Fig. 5 

For "basket" polyhedra, although aS is related to a'2It' 1'21 and 2S to 1,2i 1,2ltr ' 
relationships (6) and (7) are no longer valid. Consider the example shown in 
Fig. 5, where the symbolism of Part II is followed. Corresponding to bases ii) 
and iv) Part II, in which B - H - B  bridges are included and set equivalent to a 
B-B-B triangle and B-B bond, respectively, we have 

A B  BC CA 

1S : B C  0 

CA 1 

A B D  B C E  A B C  

2 S = B C E  0 

A B C  1 

(8) 

(9) 
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and 

AB BC CA 

I"2I=BCE 1 

ABC 1 
(10) 

so that 

1,2/tr 1,21 = 2 (11) 

1 

1,21 1,2ltr = 1 (12) 

1 

Although the "face" and "edge" matrices are isomorphous with 2S and aS respec- 
tively, these latter are no longer simply related to the products of the incidence 
matrix with its transpose. However, comparison of (1) and (4), (2) and (5), (8) and 
(11), and (9) and (12) indicates the general rule: 

aS may be formed from 1,2/tr 1,21 and 2S from 1,21 1,2ltr by deletion of the diagonal 
elements of the product incidence matrices. 

It may be shown for all of the examples discussed in Part II that by the intro- 
duction of suitable terms in the diagonal of 1S and 2S that a correspondence of 
eigenvalues can be obtained, similar to that found in Part I. It may be noted that 
zero-valued eigenvalues will still be obtained corresponding to the nullity of iS 
and 2S; this feature may be seen in the results reported in Part II, although we did 
not then comment upon it. It should further be noted that those diagonal elements 
of a,2itr 1,2/ and t,2I 1,21tr for "basket" polyhedra which have unique values 
correspond to unique simplexes (cf. ABC with ABD and BCE in the example 
above); and it is to the corresponding diagonal terms in 1S and 2S that one would 
make corrections to allow for simplex uniqueness. 

The Hiickel Theory of Conjugated Hydrocarbons 

It is recognised that many results derived from the Hiickel approach to con- 
jugated hydrocarbons is a consequence of the isomorphism between the Htickel 
and the so-called "topological" matrix. We shall conclude this paper by demon- 
strating that the topological (or Hiickel) matrix is itself derived from an incidence 
matrix by a rule analogous to that given earlier. It follows, therefore, that our work 
is a topologically correct generalization of Hiickel theory to three dimensional 
systems. 

We consider two familiar examples; the benzene molecule and the allyl radical, 
which are the two dimensional analogous of the closed (cage) and open (basket) 
polyhedra discussed earlier. 
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It is readily shown that 

0,1ltr 0 ,11= 0,11 O , 1 1 t r  = 

2 1 0 0 0 1  
1 2 1 0 0 0  
0 1 2 1 0 0 
0 0 1 2 1 0  
0 0 0  1 2 1 

1 0 0 0  1 2 

(16) 

so tha t  O'lltr 0'11 = ~ 0 ' l l t r  = Os + 116 = 1S + 116. The  topological similarity 
between a cage molecule and a cyclic conjugated system is seen by comparing 
these relationships with Eqs. (6) and (7). 

The Allyl Radical 

Using the notation of Fig. 7 we construct 0-, 0- and 1-, 1-simplexial matrices 

A B C  

A [ i  1 i l  ~  0 (17) 
C 1 

a b 

[3 

Fig. 7 

The 0-, 1-non-polarized incidence matrix is 

A B C  

~ I10 1 01]1 

so that 

and 

O'lltrO'll= 1 2 - 

0 1 

o.11 o,lr'= I21 12J 

(19) 

(20) 

(21) 
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The topological  ana logy between basket polyhedra  and non-cyclic conjugated 
hydroca rbon  systems m a y  be seen by comparing,  in part icular  (8) and (11) with (17) 
and (20). In each pair, the differences occur  along the leading diagonal  of  the 
matrices. 

Compar i son  of  (13) and (14) with (16), of  (17) with (20), and of  (18) with (21) 
indicates the general rule: 

~ may be formed from 0,1/tr 0,11 and 1S from ~ 0'lltr by deletion of the diagonal 
elements of the product incidence matrices. 

This rule demonstra tes  that  the topological  origin of  the Hiickel matrix of 
conjugated planar  systems, which is i somorphous  with ~ lies in the 0-, 1-incidence 
matrix. We have already demonst ra ted  that  the calculations which we have 
carried out  on polyhedral  molecules are similarly related to the 1-, 2-incidence 
matrix. Our  calculations are therefore a topological ly-correct  extension of  Htickel 
theory to three dimensional  molecules. 
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2 Although the matrix 1S is not generally discussed it should be noted that its eigenvalues map 
into those of ~ 


